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Abstract 
In this paper we consider the question of existence of a multieriteria-Nash equi- 
librium in multicriteria multistage N-person games. Besides, we present several 
forms of multieriteria-Nash equilibrium for repeated games both with infinitely 
and finitely many stages. 
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1 I n t r o d u c t i o n  

The dynamic aspect of certain conflict situations may be missed when 

games are considered in pure strategic form. These features appear very of- 

ten when games are played repeatedly and strategies must take into account 

the past behaviour of the players. In addition, in many real-world situations 

the agents must control more than a unique payoff thnction; Bergstresser 

and Yu (1977), Corley (1985), Fernandez and Puer to  (1996). This combi- 

nation leads to the consideration of multicri teria multistage games. In the 

following, we consider the class of the multicri teria multistage non-zero-sum 

games, the existence of a multicriteria-Nash equilibrium and we prove exten- 

sions of folk theorems tbr this class of games. We are unaware of any results 

on existence of equilibria for this class of games. In addition, although there 
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are many references to folk theorems in the literature of Game Theory, see 
e.g. Abreu et al. (1994), Friedman (1989), Gossner (1995) and the refer- 
ences therein, we are not aware of any of them dealing with lnulticriteria 
multistage games. This gap motivates our s tudy in that  these results are 
important  because they describe how to reach rational behavior in this class 
of multistage games. 

In this paper, we restrict ourselves to the simplest case where one or 
different games are played at a denumerable succession of points in time ei- 
ther finitely or infinitely many times. We prove the existence of multicriteria 
Nash equilibria for this class of multistage games and provide an easy class 
of equilibria characterized for some kind of behavior that  prescribes loyalty 
to a tacit agreement as long as it is observed by everybody, but  triggers 
retaliation as soon as someone breaks the agreement. This type of results 
is what we called multicriteria folk theorems. We present folk theorems for 
both  finite and infinite number of stages multicriteria multistage games 

The paper is organized as follows. The first section is devoted to intro- 
duce the class of games that we are to consider in the paper and to summa- 
rize the results in the paper. Section 2 formally introduces the model and 
proves that  there always exists a multicriteria multistage Nash equilibrium 
in the considered class of games. In the third section we give sufiqcient 
conditions for a family of strategy profiles, the so called punishment strate- 
gies, to be multicriteria equilibria in the finite case; and a folk theorem for 
lnulticriteria repeated games with an infinite number of stages. 

2 T h e  m o d e l  

We consider a sequence (Pl)l_<l_<L (0 < 1 _< L _< +oc)  of multicriteria 
games that are played at a succession of given points in time. Each one of 
these games is an N-person game F l = ( N ,  X ~ , . . .  , X~,l [£1, '" , l  K l~), where 
N is the set of players, X~ is the set of pure strategies of player i and 

, Ke~) is the vector payoff function of player i, i 1 . . .  n; 
l 1 . . .  L. The game pZ is referred to as the l-th stage game. The process 
where all the single stage games are played successively is called multi-stage 
game (also supergame). We assume that our games have closed-loop perfect 
state information structure. Thus, players at any stage know the states of 
the game at previous stages. A strategy in the multi-stage game is an action 
plan that  assigns a strategy in F 1 in the /-th time epoch according to the 
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infbrmation structure of the game. Notice that  according to our assumption 
these strategies are the so called closed-loop strategies. 

D e f i n i t i o n  2.1.  An L-stage N-person game G is a 2L + 1-tuple 
L G (N, ,1~'1,..., .~,n, H i , . . . , / - / i n )  where Xi [11, 1 X~, i 1 . . .  n is the 

set of strategies of player i and for any x (Xl , . . . ,  x~) E X1 × . . .  × X~, 
L xl E l  1 [~i ., ~), i = 1 , . . . ,  n is the vector payoff function of 

player i. 

x 1 Note that  for the ease of readability, we denote by xi ( i, . . . ,  xL) E X.i 
the strategies of the i-th player, i = 1 . . . ,  n. Then, we can introduce the 
concept of set of strategies in equilibrium (multicriteria Nash equilibrium). 

D e f i n i t i o n  2.2.  A multi-criteria Nash equilibrium x for the L-stage mul- 
ticriteria game G is a strategy profile x (X l , . . . , x~ )  where xi E Xi 
i 1 , . . . ,  n such that: 

xi is a weak-Pareto solution of v -  max H.i(x_i, xi), V i 1 , . . . ,  ft. (2.1) 
xi CA'i 

Recall that  v - m a x  stands for the vector maximum problem; we say 
that  x is a weak-Pareto solution of v - m a x f ( x )  (equivalently x E W E ( f ) )  

x 

if there does not exist another feasible solution ~/ satisfying f(~/) > f (x ) ,  
where > means greater componentwise. Throughout  this paper we will 
denote by v -  m a x f ( x )  the set of weakly non-dominated values of this 

x 

vector-maximum problem, that  is v - m a x f ( x )  : { f (x)  : x E W E ( f ) } .  

Definition 2.2 is not new and can be found in previous papers in the 
literature as for instance in W'ang (1993), Borm et al. (1999) and the ref- 
erences therein. It is worth noting that it extends the rationale behind 
the classical definition of Nash equilibrium, Nash (1950), and that  it also 
reduces to it when the number m of objective functions equals 1. 

The first question the readers may put is whether any sequence of single 
stage multi-criteria Nash equilibria will result in a multi-criteria L - stage 

Nash equilibrium. The answer is negative. This increases the interest in 
studying this class of games. 

E x a m p l e  2.1. Consider the two-stage repeated bicriteria game with payoff 
matrices: K (A1, A2), where 

, 0,1 1 A1 (0, 6) (1, 4) ' A2 (6, 0) (4, 1) " 
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Let us denote by Li (IIj) the i - th pure strategy of player 1 (j-th pure 
strategy of player 2). The single stage game with payoff thnction given by K 
has 4 lnulti-criteria Nash equilibria: (/1, I h ) ,  (/1, I h ) ,  (h ,  I / i ) ,  (h ,  I h ) .  
If we allow only pure strategies in the two-stage game, we have that the set 
of strategies for players I and II are: 

Player I 1111 IlI2 [211 1212 
Player II 111111 IIllI2 [[2111 112112 

These individual strategies give rise to 16 combinations that are the pure 
strategies of the supergame. Since payoffs will be the sum of payoff~ in each 
period we have the following payoff matrices: 

A1 

(8, 2) (10, 1) (10, 1) (12,0) 
(4, 7) (5, 5) (6, 6) (7, 4) 
(4,7) (<6) (5,5) (7, 4) 

(0, 12) (1, 10) (1, 10) (2, 8) 

A2 

(2, 8) (1, i0) (i, i0) (0, 12) 
(7, 4) (5, 5) (6, 6) (4, 7) 
(4,7) (<6) (5,5) (4,7) 
(12,0) (10, i) (i0, i) (8, 12)) 

Take the following combination of Nash equilibria of the single stage game: 

stage 1 stage 2 
(11,111) (I2,-1-I2) 

In the 2-stage game the strategy ((I1,II1), (I2,II2)) has a payoff for player 

I: (5, 5). It is clear that the strategy ((/2, I11), (11,112)) has a better payoff 

for player I that is (6,6). Therefore, the s t ra tegy ((11,111) , (12,112)) is not 

a Nash equilibrium in the 2-stage repeated game. 

In spite of that example, in the case of repeated games it can be easily 
shown that the set of Nash equilibria is not empty because the repetition of 
the same Nash equilibrium in each single stage game is a Nash equilibrium 
in the supergame. 

First of all, we must explain this assertion. We have defined the multi- 
criteria multi-stage Nash equilibrium x = (xl,...,x.r~) as a n-tuple of L- 

X 1 tuples since xi ( ¢ , . . . , x ~ )  for i = 1 , . . . , n .  Nevertheless, we may 
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see the equilibrium x in a different way rearranging its components. Just 
consider x l ( x ~ , . . . , x ~ )  fox" any 1 1 , . . . , L .  Then we can also write 
x ( x l , . . . ,  xC). After that  transformation, x l is a combination of strate- 
gies for the players in the game F l. In this sense, we can also see x as 
a sequence of strategies of the players in the single stage games. Thus, it 
makes sense to s tudy whether there are multi-stage Nash equilibrium whose 
components are Nash equilibria in the single-stage games. 

Our next result states that  the set of multi-criteria multi-stage Nash- 
equilibria is not empty and moreover that  there always exists a multi- 
criteria multi-stage Nash-equilibrium which consists of multi-criteria Nash- 
equilibria of single-stage games. 

For the ease of readability let us denote by A @ B {c : c a + b, a E 
A, b E B } .  

T h e o r e m  2.1. For any multicriteria multi-stage gauze (not necessarily re- 
peated) satis]ying that the set of strategies X,[ i 1 , . . . ,  n and 1 1 , . . . ,  L 
is convex and compact and the vector payoff Junctions K,~ are continuous 

l for a n y x ~  i fixed, i 1, . n a n d l  1, L; there and concave in x i .. , . . . ,  
exist ~l ¢~, . . .  ~l , ~) 1 1 , . . . , L  multicriteria Nash-equilibria in the 1- 
th-stage gauze F l 1 1 , . . . ,  L such that the strategy pwfile x (Xl , . . . ,  x~) 
where X~ ( x l , . . . ,  2) )  i 1 , . . . ,  n is a multi-stage Nash-equilibria in G. 

Pro@ Because of the continuity and concavity of the payoff functions and 
the compactness and convexity of the strategy sets, the set of multicriteria 
Nash-equilibrium points is not empty (see Corollary 3.2 in Wang (1993)). 
Nash-equilibria of G are those strategy profiles (Xl , . . . ,  x~) that  hold: 

xi is a weak-Pareto solution of v -  max Hi(x_i,  xi), V i 1 , . . . ,  n. 
xiEX~ 

Now, Hi(x- i ,  xi) c l l l E l  1 I~i(X--i' Xi)" Then, since the sum function is stage- 
wise separable and monotonic we can apply the following recursive equa- 
tions: (Notice that  these equations are similar to Bellmann's principle but 
applied for multi-criteria dynamic programming as shown for instance in 
Mitten (1974) and Villarreal and Karwan (1982)) 

v - maXx~ cx~ H,~ (x_~, x d  ( ~-~L-1 l l V--IIlaXx~cX ~,...,xiL l_.rL~i 1 l 1 I~i(X--i,X~) 
KL(  L. ))) ~)v-  max x , Vi  1 , . . . , n  
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X 1 From this expression, any weak-Pareto solution ( i," " ,  x))  of the lef'thand 
problem, for any i 1 , . . . ,  n, admits a decomposition where the L compo- 
nent x )  is a weak-Pareto solution of the problem at the L-th stage problem. 
Therefore, at the L-stage it must exist 2L being a Nash-equilibria in F c. 
Then, reasoning by backward induction we obtain the result. [] 

3 R e p e a t e d  g a m e s  

In this section we consider repeated rather than general multi-stage 
games. Note that  under this hypothesis the single stage games F Z are all 
the same and therefore, we will omit the superscript in the notation. 

For any strategy x_i of set of players N \ i in the game F, we denote 
by vij(x-i)  max~ K,ij(x_i,x~), i.e. the best payoff that  player i gets in 
his j - th  criterion j 1 , . . . , m  against x-i .  Next, we introduce the set of 
security level vectors for the set of players N \ i: 

Vii, v-Inln ( V i l ( X - i ) , . . . , v i r n ( x - i ) ) .  23 i 

It is worth noting that ~ is the set of weakly non-dominated values of the 
above vector-minimum problem. 

We also introduce the set 

E f f ,  i { x - i :  ( v i i ( x - i ) , . . .  , v im(x - i ) )  E Vi}. 

Every element of E f f i  will be denoted by ,}-i. The component of :~-i that  
corresponds to the strategy of player j # i will be referred to as (:~-i)j. 

Assume that  we fix a Nash equilibrium ~ in F and denote by hi K,i(x). 
Further assume that there exists a strategy 2 with ]{ K,i(2) such that  
there exists at least one j with i j > i j .  Moreover, assume that  there does 

not exist vi E V~ such that  vi _> hi for all i -- 1 , . . . ,  n. 

Consider the following family of strategies that  we call punishment 
strategies: 

Player i must play his strategy xi on each stage 1 (1 < 1 < s) 
if none of the players j ¢ i deviates from 2j on the stages 
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k 1, 2, . . . ,  s - 1 and then he plays .~i on the remaining L - s 
stages. 

Denote by 1 ° the first stage when a player, say j ,  first deviates 
fl'om his 2 strategy (in other words 1 ° is the number of the stage 
when the player i first time observes deviation of some player 
j / ~  i fl'om his 2j strategy and 1 ° < s ), then player i must play 
(2- j ) i  for any Fc_j E E f f j ,  from the stage l ° + 1 until the end 
of the game at stage L. 

It is clear that  this family of strategies is correctly defined for all histories 
of the game. A similar family of strategies was already introduced although 
for single criterion games in Petrosjan and Egorova (2000). We can prove 
the following result. 

T h e o r e m  3.1. Let G be a repeated game with a finite number L of stages. 
Then the n-tuple of punishment strategies is a multicriteria Nash equilibrium 
of G ff and only if 

~ui E U~ such that ui > ~ + ( L -  s)~i, V i 1 , . . . , n ,  (3.1) 

where U~ v-maxK,~(2_i, xi) Q (L - s )~ .  
xi  

Pro@ Assume that  everybody plays the punishment strategy. Then player 
j gets the payoff ~js + (L - s)Aj. If player j abides by the punishment 
strategy up until period s - 1, but in period s he deviates, then he can not 
get more than the payoffs in the following set: 

lj(  - v -  K5(2 j, (C 
x j  

Thus, the condition for the n-tuple of punishment strategies (2, x) to be a 
multicriteria Nash equilibrium is that  

/ ~ u i E U i s u c h t h a t  ~ i ( s - 1 ) + u i > ~ i s + ( L - s ) A i  Vi  1 , . . . , n .  

Hence, the condition (3.1) holds. [] 

Let us denote by ~ i  v -  maxx{ Ki(2_{, x{) for all i 1 , . . . , n .  In 
addition, we write, according to the previous theorem, the elements u{ E U,~ 
as u{ n{ + (L - s)vi, where ~.i E ;gi and v{ E ½. Our next result gives a 
constructive sufficient condition on the value s for the n-tuple of punishment 
strategies to be a multieriteria Nash equilibrium. 
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T h e o r e m  3.2 .  Let G be a repeated game with a f inite number L of stages. 
if  

rain m a x  (~5 - ~5)~  + L() ,~ - v~)~ _> s,  
, j  +(L-~),~j euj (k:(Xj-~5)k>0} (X5 - va )k 

or 

max rain (]Xj - nj)k  + L(,~j - vj)k < s 
~j+(L-s).~jcUj {k:(~-~5)k<0 } (~a -- Va)k -- 

Vj 1 , . . . ,  n, then the n-tuple of pun ishment  strategies is a multicriteria 
Nash equilibrium in G. 

Proof. From condition (3.1) the n-tuple of punishment strategies is a Nash 
equilibrium iff for all j 1 , . . . ,  n and all u nj + (L - s)vj  E Uj there 
exists k, 1 < k < m (notice that  such index k k(j ,  u) because depends on 
j and u) such that  

(~j + (L - s)Aj)Ic >_ uk for some k 1 , . . . , m .  

Since uj nj + (L - s)vj  this condition is equivalent to: 

(]~j - nj)k  + L(Aj  - vj)k >_ s(Xj - vj)k for some k 1 , . . . , m .  

Therefore, a sufficient condition is given by replacing, depending on the sign 
of (Aa - v j ) k ,  the lefthand (righthand) term in the above inequality by a 
lower (upper) bound, i.e. 

or 

ra in  m a ×  (~5 - ~5)k + L(~5  - vs)k  _> s ,  
K,j +( L - s )v j  eUj (k:(~j --vj)k>0} ( )~j -- Vj )k 

Ill&X Illin 
~j +(L-s>j cUj { k:(J,j -~5) k <0} 
for any j 1 , . . . , n .  

(~5 - ,~5)k + L(X5 - v j )k  _< s,  
(X5 - vs)k  

[] 

Obviously, the existence of such an n-tuple of punishment strategies is 
not trivial and it does not always exist. It will depend on the multicriteria- 
Nash equilibrium x that  we choose and on the strategy :~. In fact, as we 
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will show in the next examples there are choices so that the punishment 
strategy is a multicriteria-Nash equilibrium for some values of s and there 
are other choices where we cannot obtain multicriteria-Nash equilibrium by 
punishment strategies for any value of s. 

E x a m p l e  3.1. Consider the L repeated bicriteria game with payoff matri- 
ces: K (A1, A2), where 

E E A1 ( -1 ,  0) (0, 0) ' A2 ( -1 ,  1) (0, 0) " 

In this game it is easily seen that  the set of multicriteria-Nash equilib- 
rium is given by: 

{ ( 1 , 0 ) }  × {(q, 1 - q):  q ~ [0,1]} u {(~, 1 - : v ) :  :v ~ [0, 1]} × { (1 ,0 ) } ,  

where the first vector in the cartesian product are the strategies for player 
I, and the second vector the strategies for player II. In addition, p denotes 
the probability of playing the first strategy for the first player; and q is the 
probability that  the second player plays his first strategy. 

Let us choose 2 ((0, 1), (1, 0)) and 2 ((1, 0), (1, 0!). Thus 
( ( -1 ,  0), ( -1 ,  1)) and X ( ( -1 ,  1), ( -1 ,  1)). It is clear that  ,'~I>Xl. 

# 

The payoff functions in the game are: 

1~1 ([e, q) (--q + p(1 -- q), pq + p(1 -- q)/2) 

K2(p ,q )  ( - - q - - 3 p ( 1 - - q ) , q ( 1 - - p ) + p ) .  

The security level set V1 and ~2 are: 

1/1 {(1 - 2q, (1 + q)/2) : q E [0, 1]} 

v~ { ( - 3 p ,  1) : 0 _< p _< 1 /3}  u { ( - 1 , 1 )  : 1/3 _< p _< 1}. 

Besides, the set ]~i i 1, 2 are in this example: 

]~1 {(--l~p) :p  E [0~1]}~ 

/C2 { ( -3  + 2q, 1):  q E [0, 1]}. 

Applying Theorem 3.1 the n-tuple of punishment strategies is a multicriteria- 
Nash equilibrium iff there does not exist p, q satisfying all the conditions 



284 L. Petrosjan and J. Puerto 

(3.1). In our example one of the conditions is tha t  there does exist an ele- 
ment  of/C2 Q (L - s)V2 being greater than  ),2 + (L - s)A2 ( - ( L  - s) - 
1, L - s + 1). In this example: 

1C2Q(L-s)V2 { ( - 3 + 2 q - a p ( L - s ) , l + ( L - s ) ) : 0 _ < p _ < l / 3 ,  q_>0} 

U { ( - 3 + 2 q - ( L - s ) , l + ( L - s ) ) : l / 3 _ < p _ < l ,  q_>0}. 

However, for no 0 _< p _< 1 the second component  of the elements of/C2 Q 
(L - s)V2, namely 1 + (L - s), can be greater than 1 + (L - s), the second 
component  of A2+ (L-s)A2. Therefore, condition (3.1) is always fhlfilled for 
any 1 _< s _< L. Hence, the punishment  s t rategy is always a multicriteria- 
Nash equilibrium. 

E x a m p l e  3.2. Consider the L repeated bicriteria game with payoff matri-  
ces: /£ (d l ,  d2),  where 

[ ( - 1 , 1 )  ( 1 , 1 ) ]  [ ( - 1 , 1 )  ( - 3 , 1 ) ]  
A1 (--1,3) (0,0) ' A2 = ( -1 ,  1) (0,0) " 

In this game it is easily seen tha t  the set of multicri teria-Nash equilib- 
r ium is given by: 

{ ( p , l - p ) : O < p < l / 3 } × { ( q , l - q ) : l / 3 < q < l } U  

{(> 1 - ~,): 1/3 _< ~, _< 1} × {(1, o)} u {(1, 0)} × {(q, 1 - q) : o _< q _< 1}, 

where p is the probability for playing the first s trategy for the first player; 
and q is the probability that  the second player plays his first strategy. 

Let us choose ~ ((1/3, 2/3), (1/3, 2/3)) and ~ ((1/3, 2/3), (1, 0)). 
Thus ), ( ( - 1 / 9 ,  1), ( -1 ,  5/9)) and ), = ( ( -1 ,  7/3), ( -1 ,  1)). It is clear 
tha t  ),2 >),2. 

# 

The  payoff functions in the game are: 

Kl(p,q) (--q + p(1--q),p(1-- 3q) + 3q) 

K2(p,q) ( - q  - 3p(1 -q ) ,p+q(1  -p)) .  

The security level set V1 and V:2 are: 

V1 { ( 1 - 2 q ,  1 ) ' 0 _ < q _ <  1 / 3 } U { ( 1 - 2 q , 3 q ) '  1 /3_<q_< 1}, 

v,2 {(-3p,  1) : 0 _< p _< 1/3} u { ( - 1 , 1 ) .  1/3 _< p _< 1}. 
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Besides, the set /~i  and Ui i 1, 2 are in this example: 

]~1 { ( - -1 ,3 - -2p) :DE [0,1]}, 
/C2 {( -1 ,  1/3 + 2/3q) : q E [0, 1]}. 

U1 { ( - 1  + (1 - 2q)(L - s) ,3 - 2 p +  (L - s)) : 0 _< p _< 1, 0 _< q _< 1/3} 

U { ( - l + ( 1 - 2 q ) ( L - s ) , 3 - 2 [ ) + 3 q ( L - s ) ) : 0 _ < p _ < l ,  1 /3_<q_<1},  

U2 { ( - 1  - 3p(L - s), 1/3 + 2/3q + (L - s)) : 0 <_ p <_ 1/3} 

U{( -1  - (L - s), 1/3 + 2/3q + (L - s)) : 1/3 _< p _< 1}. 

In this example there are elements satisfying the conditions (3.1). It s u f  
rices to take p < 1/3 and q _> 1/3. Therefore, since there are elements 
satisfying all the inequalities this n-tuple of punishment strategies is not a 
multicriteria-Nash equilibrium. 

In order to obtain folk theorems for repeated games with an infinite 
number of stages we need to impose some more conditions. First, we need a 
discount factor so that  the infinite summation is convergent. Let 0 < (~i < 1 
be the discount factor of player i, i 1, . . . ,  n. Second, let us assume that  
there does not exist vi > Ai, i.e. fbr all vi E ½ there exists a j ( i )  such that  
~;(~) _> (vd;(~). 

We call trigger strategy, the strategy that  fbr player i consists to play: 

If none of other players previously deviate from 2 strategy 
play 2i. If 1 - 1 is the first stage when one of the other players 
first deviate and that  player is j then play (:~-j)i. 

T h e o r e m  3.3. Let G be a repeated game with an infinite number of stages 
and discount factor a (ai)i 1...~. The n-tuple of trigger strategies is a 
Nash equilibrium if  for  any i 1, . . . ,  n 

Inax 
- L ) k  

7 -> 
or  (3 .2 )  

rain (hi - ),i)k < (~i Vni E/~i, vi E ½. 

Proof. Let us assume that  every player plays without deviation the trigger 

strategy Then, player i gets the vector payoff': £~ If player i abides by 
• 1 _ o ~  i • 
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the strategy up until period l - 1 and then he deviates then he can not get 
more than the payoffE in the set: 

o ~  

1 - 1  ~ r )li®c {K{@Z 
r / + 1  

where/Ci v - max. i  Ki(.~_< xi). The condition to be a Nash equilibrium 
in G is that  for any ni E/Ci and vi E % there exists a k (note that  this k 
depends on ni and vi) such that: 

l . , / + 1  

l - o q  - 1 - ( ~ i  l - o ~ i t  ~)k. 

This is equivalent to that  for any i = 1 , . . . ,  n: 

ch(ni - -v i )k_> ( n i - - i i ) k  Vn{E/Ci, v i E < a n d s o m e k .  

Hence, a sufficient condition is that  for any i 1 , . . . ,  n: 

o r  

m a x  

{k:(~-,~,~)~>o} (n{ - ~'{)k 

_~ O~i, 

<c~i VniEK;~, v i E ½ .  

[] 

C o r o l l a r y  3.1. In the saute hypothesis that theorem 3.3, an n-tuple of 
trigger strategies is a Nash equilibrium in G if for any i 1 , . . . ,  n: 

rain max (hi - i i )k 

vi EVi 

or (3.3) 

max min (hi - ]q)k 
ni ~ /~i  {k:(,~-~Ok>O} (hi - vi)k 
vi E½ 
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